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A B S T R A C T   

Global spread of COVID-19 has seriously threatened human life and health. The aerosol transmission route of 
SARS-CoV-2 is observed often associated with infection clusters under poorly ventilated environment. In the 
context of COVID-19 pandemic, significant transformation and optimization of traditional ventilation systems are 
needed. This paper is aimed to offer better understanding and insights into effective ventilation design to 
maximize its ability in airborne risk control, for particularly the COVID-19. Comprehensive reviews of each phase 
of aerosol transmission of SARS-CoV-2 from source to receptor are conducted, so as to provide a theoretical basis 
for risk prediction and control. Infection risk models and their key parameters for risk assessment of SARS-CoV-2 
are analyzed. Special focus is given on the efficacy of different ventilation strategies in mitigating airborne 
transmission. Ventilation interventions are found mainly impacting on the dispersion and inhalation phases of 
aerosol transmission. The airflow patterns become a key factor in controlling the aerosol diffusion and distri-
bution. Novel and personalized ventilation design, effective integration with other environmental control 
techniques and resilient HVAC system design to adapt both common and epidemic conditions are still remaining 
challenging, which need to be solved with the aid of multidisciplinary research and intelligent technologies.   

1. Introduction 

The novel coronavirus disease COVID-19 pandemic, caused by SARS- 
CoV-2 virus, remains a global challenge and a severe threat to public 
health. As of 29 August 2021, there have been more than 216 million 
infected cases globally, including over 4.4 million deaths as reported by 
the World Health Organization COVID-19 dashboard (https://covid19. 
who.int/). These astonishing numbers have highlighted the impor-
tance of using effective measures to prevent and control the spread of 
this highly contagious disease. 

The World Health Organization (WHO) issued an updated scientific 
brief on 31 April 2021, which summarized the current knowledge about 
the transmission routes of SARS-CoV-2 and indicated the possibility of 
aerosol transmission of the virus (WHO, 2021). The virus can be released 
by the infector through sneezing, coughing, talking or breathing in small 
particles ranging from larger droplets to smaller aerosols (5 μm as a 
cut-off size in this work). Current evidence suggests that the SARS-CoV-2 
can be transmitted between people in short range (<1 m) by inhaling or 

contacting the aerosols or droplets containing the virus or it can be 
transmitted in long-range (>1 m) in poorly ventilated and/or crowed 
indoor settings over long exposure time. Touching contaminated sur-
faces with the virus when touching the eyes, nose or mouth with hands 
can also be a transmission way. 

Among the reported transmission modes of SARS-CoV-2, including 
droplet, aerosol, contact and contamination (WHO, 2020), aerosol 
transmission is one of the most critical routes for infection prevention 
and control and it is usually associated with clusters of infection in 
public spaces, especially when poorly ventilated. An outbreak of 
COVID-19 in an air-conditioned restaurant in Guangzhou, China, 
causing 10 infections by one infector, showed no direct contact or fomite 
contact identified from the surveillance recordings and the airflow was 
modeled of consistent direction with aerosol transmission (Li et al., 
2021; Lu et al., 2020). This implied probable airborne transmission of 
SARS-CoV-2 with insufficient ventilation of merely 1 L/s per person (Li 
et al., 2021). The superspreading event occurred in a 2.5-hour choir 
practice of the Skagit Valley Chorale where 61 persons attended with 52 
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COVID-19 infected cases, illustrated the airborne route as a major 
contributor despite adequate precautions being made to avoid either 
fomite or ballistic droplet transmission (Hamner et al., 2020). Miller 
et al. (2020) also investigated this event and estimated a ventilation air 
change rate of 0.3 to 1 h− 1 during the choir practice, which might 
promote the spreading of aerosols and inhalation by the exposed 
members. Katelaris et al. (2021) investigated a SARS-CoV-2 outbreak in 
a church in Sydney, and reviewed the epidemiologic and environmental 
findings to assess the possibility of airborne transmission, suggesting the 
probable airborne transmission route of the virus and poor ventilation 
possibly being a contributor to this route (Katelaris et al., 2021). Other 
cluster reports also suggested involvement of airborne transmission 
(Hijnen et al., 2020; Hwang et al., 2021; Jang et al., 2020; Muller et al., 
2020; Park et al., 2020;). Although the circumstances under which 
aerosol transmission of SARS-CoV-2 might occur are still uncertain, 
there is growing evidence that aerosol transmission of the virus is 
plausible under conditions conductive to disease transmission (Mor-
awska et al., 2020; Tang et al., 2020), particularly in relatively confined 
space with dense occupancy, long duration and poor ventilation (Miller 
et al., 2020). Therefore, ventilation that is used as a primary engineering 
measure for aerosol transmission control should be considered as a 
non-negligible factor in SARS-CoV-2 prevention and control in indoor 
settings (Correia et al., 2020). 

Heating, ventilation and air conditioning (HVAC) system is typically 
used to provide mechanical ventilation in buildings. Natural ventilation 
is also a good practice providing outdoor fresh air, which has been 
practiced in many healthcare facilities in regions with favorable climate 
conditions (e.g. hot or warm climate) (Aviv et al., 2021). Ventilation 
plays a critical role in removing contaminants including infectious 

aerosols indoor to maintain a good air quality. (Liu, Ning et al., 2020) 
detected air samples in two hospitals in Wuhan, China, and found pos-
itive SARS-CoV-2 RNA in the air in medical staff areas, isolation wards, 
ventilated patient wards and toilets. Air samples containing positive 
SARS-CoV-2 particles were also detected by other studies in hospitals 
(Chia et al., 2020; Kenarkoohi et al., 2020; Razzini et al., 2020; San-
tarpia et al., 2020). SARS-CoV-2 virus has been shown to remain viable 
in aerosols for over 3 hours with an estimated half-life of 1.1~1.2 hours 
(van Doremalen et al., 2020). The evidence shows that aerosols released 
by infected patient can be potentially infectious pollutant source in the 
air which should be removed by ventilation to prevent further infection 
and spread to susceptible individuals. 

Fig. 1 depicts the aerosol transmission process of SARS-CoV-2 indoor 
with three different phases from the source to the receptor in a venti-
lated room. The basic concept of ventilation against aerosol transmission 
is to dilute the overall viral concentration to a safe level with adequate 
ventilation rates (Ding et al., 2020; Li et al., 2007). Filtration and ster-
ilization means coupled with the HVAC systems are capable to remove 
the airborne pathogens before entering the room or after leaving the 
exhaust to avoid contamination (Morawska et al., 2020; Xu, Luo, Yu & 
Cao, 2020; Zheng et al., 2021). Moreover, appropriate air distribution 
patterns are also important to avoid the build-up of viral contamination 
in specific locations in ventilated context (Berlanga et al., 2018; Dietz 
et al., 2020; Kong et al., 2021). Buonanno et al. (2020) found that 
ventilation can change the distributed locations of SARS-CoV-2 and 
reasonable airflow pattern is helpful to reduce the accumulation of the 
virus. As a traditional engineering method, ventilation not only shows 
effectiveness in protecting occupants from long-range aerosol trans-
mission, but may also affect the short-range dispersions of the exhaled 

Fig. 1. Schematic of potential aerosol transmission route of SARS-CoV-2 and the intervention of HVAC system. Aerosol transmission can be divided into three phases: 
① aerosol generation by the infector, ② aerosol dispersion and virus inactivation, and ③ inhalation and deposition on target tissues to cause infection. 
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virus-laden air from the source end. Chen et al. (2021) reported that an 
increase of ventilation flow rate will decrease short-range exposure of 
exhaled aerosols due to enhanced dilution effect of ventilation. Novel 
occupant-targeted ventilation strategies can also be a shift to improve 
the local viral contamination (Melikov, 2020). Overall, effective venti-
lation strategies should intervene the transmission process of virus-laden 
aerosols, after leaving the infected source and before entering the 
inhalation of another person. 

Therefore, to better understand how building ventilation affects the 
mode of aerosol transmission of SARS-CoV-2 and to develop optimal 
intervention strategies, this paper: (1) reviews each process of the 
infection pathway from the source to the receptor to provide a theo-
retical basis for SARS-CoV-2 risk assessment and control; (2) investigate 
applicable infection risk models for SARS-CoV-2 in ventilated context 
based on the understating of the probable aerosol transmission route of 
the virus; and (3) analyze the merits of different ventilation strategies 
concerning airborne infection risk mitigation. The remaining challenges 
and developing trends of ventilation systems for airborne infection risk 
control are also discussed. This paper will provide meaningful insights 
into aerosol transmission mechanisms, associated risk assessment 
methods and potential engineering control strategies to prevent and 
control the spread of COVID-19 in indoor environment. Results of this 
study will be helpful to offer better understanding and insights into 
effective ventilation design to maximize its ability in reducing airborne 
infection risk in the context of COVID-19. 

2. Aerosol transmission of SARS-CoV-2 

Aerosol transmission of a certain disease is biologically plausible 
when: (1) infectious aerosols are generated from an infector; (2) the 
pathogens contained in the aerosols remain viable in the air for some 
time; and (3) the target tissues are accessible to the aerosols where the 
pathogens initiates infection (Jones & Brosseau, 2015). The trans-
mission process of SARS-CoV-2 illustrated in Fig. 1 basically complies 
with the criteria proposed by Jones and Brosseau (2015), but it will be 
discussed more from aerodynamics perspectives to assist further 
implementation of engineering control measures, in particular, the 
ventilation strategies. Tracking of the three phases of SARS-CoV-2 
transmission will simultaneously provide more evidence to support 

the aerosol transmission route. 

2.1. Aerosol generation 

Respiratory droplets are generated by atomization of secretions in 
respiratory tract during daily breathing activities (e.g. normal breathing, 
talking, singing, sneezing and coughing) (Roy & Milton, 2004). The 
droplets are normally polydispersed with many different sizes. The 
concept of aerosol in this work is adopted as droplet or droplet nucleus 
(Wells, 1934) with an aerodynamic diameter smaller than 5 μm, which 
can contribute to both short range and long range transmission of 
SARS-CoV-2. The SARS-CoV-2 virus has been frequently detected in 
nasopharyngeal exudates, sputum, blood and other body excreta like 
urine and feces of infected patients (Costa et al., 2021; Hou et al., 2020; 
Jacot et al., 2020; Jeong et al., 2020; Xie et al., 2020). Aerosols derived 
from sites bearing pathogens have the highest possibility to carry with 
them (Gralton et al., 2011). Aerosolization of the respiratory secretions 
of patients infected by SARS-CoV-2 is likely to produce virus-containing 
droplets or aerosols through the respiratory activities. The virus of 
SARS-CoV-2 has been detected in the condensate of patient’s exhaled 
breath and millions of particles containing the virus may be released by 
the patient per hour due to merely tidal breathing (Ma et al., 2021). 

2.1.1. Atomization mechanism 
The atomization mechanisms of the respiratory secretions have been 

postulated with several modes occurring at different sites at the respi-
ratory tract between the mouth and alveoli, as shown in Fig. 2 (Gralton 
et al., 2011; Johnson & Morawska, 2009; Johnson et al., 2011; Mor-
awska et al., 2009; Patterson & Wood, 2019). Understanding the at-
omization mechanisms can be helpful to understand the origins of the 
infectious aerosols. 

Early studies proposed the generation of aerosol during tidal 
breathing through high-speed atomization (Jennison, 1942; Slonim & 
Chapin, 1967). Later studies (Gebhar et al., 1998; Johnson & Morawska, 
2009; Johnson et al., 2011) indicated the aerosols generated by the 
re-opening of terminal bronchioles during inhalation and consensus 
have been emerged on the bronchiole fluid film burst mechanism (BFFB) 
for aerosol generation during tidal breathing (Fig. 2(d)). Aerosols may 
also be produced by shear stress with high-speed flow, which drives the 

Fig. 2. Illustration of the aerosolization mechanisms occurring in human respiratory tract (Johnson & Morawska, 2009; Patterson et al., 2019). (a) Film burst and 
filament in the mouth; (b) laryngeal generation due to vocal fold vibration and open/close action; (c) film burst by shear stress due to high velocity in large bronchi; 
and (d) bronchiole fluid film burst mechanism (BFFB) from re-opening of terminal bronchiole during breathing. 
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lining fluid in large bronchi to rupture (Leith et al., 1986) (Fig. 2(c)). 
This may occur in violent breathing activities like coughing or sneezing. 
Energetic vocal fold vibrations during speech or coughing may also 
generate aerosols (Fig. 2 (b)) (Johnson et al., 2011). In the process of 
speaking, the tongue moves in the mouth to produce fluid film and then 
breaks to produce droplets (Johnson et al., 2011). The closure and 
re-opening of the mouth tips may also cause filament and burst of 
droplets (Abkarian & Stone, 2020) (Fig. 2(a)). Large droplets produced 
by the oral mode (mouth, tongue and lips) are inferred to be originated 
from saliva (Guo et al., 2021). 

Table 1 summarizes the probable mechanisms of droplet generation 
with different breathing activities and the produced droplet sizes along 
with these activities. Morawska et al. (2009) and Johnson et al. (2011) 
identified overlapping modes within different breathing activities, 
implying the possibility of a mixture of different origins of the expelled 
aerosols from the respiratory tract. This explains why there is wide range 
of droplet size distributions from coughing, sneezing or speaking, but a 
relatively concentrated droplet size distribution <5 μm from tidal 
breathing, predominantly being considered as aerosols. This is because 
the aerosols generated by tidal breathing is mainly governed by BFFB. 
Droplets from other respiratory activities (e.g. coughing, sneezing or 
speaking) may be driven by overlapping mechanisms with multimodal 
droplet size distributions. Table 1 also shows that there is large 
discrepancy of droplet size distribution among different studies, varying 
from sub-micrometer to 1000 μm range as a result of the complexities of 
physical formation mechanisms and measurement techniques. The 
droplet sizes strongly influence the fate of droplet transport in indoor 
environment. Accurate determination of the size distributions of infec-
tious particles remains critical. The broadly distributed sizes indicate the 
expelled particles from the infected source may be transmitted to others 
avail of both droplets and aerosols. Precautions for airborne infection 
control should be made to include measures for both transmission 
routes. 

2.1.2. Viral load of SARS-CoV-2 in body fluid 
The quantification of viral load expelled from the infected source is 

vital for subsequent risk assessment. For SARS-CoV-2, the viral load may 
be non-uniformly distributed in the fluid of different sites in respiratory 
tract. It may also differ between asymptomatic and symptomatic pa-
tients. Zou et al. (2020) detected higher viral loads in the nose than in 
the throat but no significant difference between asymptomatic and 
symptomatic patients. While Costa et al. (2021) detected significant 
higher viral load of SARS-CoV-2 in symptomatic than in asymptomatic 
subjects from patients’ nasopharyngeal exudates. SARS-CoV-2 was 
found in sputum at an average concentration of 7.00 × 106 copies per 
mL and a maximum load of 7.11 × 108 copies per throat swab (Wölfel 
et al., 2020), which suggested active virus replication in tissues of the 
upper respiratory tract. However, not all the aerosolized droplets will 
contain virus. The expelled viral load of SARS-CoV-2 would be more 
representative to indicate the viral transmissibility through aerosols 
than the viral load obtained by swabs from respiratory fluids. 

The detected viral load in exhaled breath samples (mean: 2.47 × 103 

copies per 20 times exhaled breath) was found significantly lower than 
that in oral-nasopharyngeal swabs (mean: 7.97 × 106 copies per swab) 
(Malik et al., 2021). Compared detecting SARS-CoV-2 RNA in 
oral-nasopharyngeal swabs, detecting the samples of exhaled breath 
may be more suitable for evaluating the infectivity of SARS-CoV-2 
through droplets (Malik et al., 2021; Yun et al., 2020). Laser scat-
tering observations show that loud speech can produce thousands of 
droplets per second and they can stay in the air for 8-14 minutes, pre-
sumably corresponding to the behavior of droplets of 12-21 μm before 
dehydration or droplet nulcei of ca. 4 μm (Anfinrud et al., 2020; Stad-
nytskyi et al., 2020). As the existence of SARS-CoV-2 in exhaled droplets 
or aerosols has been proved, infection is likely to occur if the 
virus-contained droplets being inhaled by susceptible persons. It also 
implies the control measures, like wearing face masks (Cravero and 
Marsano, 2021; Milton et al., 2013) or exhaust the exhaled particles 
from source timely, would be possible to block or exhaust viral particles 
to mitigate the transmission risk of the disease from the source end. 

Table 1 
Probable aerosolization mechanisms involved in different breathing activities and the measured initial droplet sizes and concentration.    

Respiratory activities   
Breathing Speaking Coughing Sneezing 

Aerosolization mechanism ( 
Fig. 2) 

(a) Film burst and 
filament in the mouth 

− + + +

(b) Laryngeal 
generation due to vocal 
fold vibration 

− + + +

(c) Film burst by shear 
stress in large bronchi 

− − + +

(d) BFFB in terminal 
bronchioles 

+ + + +

Initial droplet size and 
concentration distribution 
expelled at mouth/nose 
opening 

Droplet size (μm) • Mode: 0.8 ( 
Morawska et al., 
2009) 

• Peak size: 0.8-0.9 ( 
Morawska et al., 2009) 

• Peak size: 0.8-0.9 ( 
Morawska et al., 2009) 

• Range: 1-1000 (Duguid, 1946)   

• 0.3-0.4 ( 
Almstrand et al., 
2010) 

• Geometric mean: 16 (Chao 
et al., 2009) 

• Geometric mean: 13.5 
(Chao et al., 2009) 

• Range: 0.1-1000; 360.1 μm 
(geometric mean of   

• 0.05-5 (Milton 
et al., 2013) 

• 1.6, 2.5 and 145 μm (count 
median) were detected. ( 
Johnson and Morawska, 
2009) 

• Range: 1-2000, 95% 
between 2 and 100 μm ( 
Duguid, 1946) 

unimodal distribution, SD = 1.5) and 
74.4 μm (geometric mean of bimodal 
distribution, SD = 1.7) (Han et al., 
2013)  

Droplet concentration 
(cm− 3) 

• 0.05-0.092 ( 
Morawska et al., 
2009) 

• 0.307 (Morawska et al., 
2009) 

• 0.67 (Morawska et al., 
2009) 

• An average number of a sneeze 
releases is 1 × 106, 200-fold more    

• 0.004-0.223 (Chao et al., 
2009) 

• 2.4-5.2 (Chao et al., 
2009) 

particles than a cough. Fluid volume 
for a sneeze is 1.2 ×

• 5 × 103(average 
number emitted per 
cough) (Duguid, 1946) 

10− 5 mL. (Duguid, 1946) 

*”+” means possible and “− ” means largely impossible to occur. 
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2.2. Dispersion and viability 

2.2.1. Droplet evaporation and deposition 
Exhaled droplets contain water and non-volatile solutes. After com-

plete evaporation, the solid residuals in droplets are left. They were first 
named by Wells as droplet nuclei in 1934 (Wells, 1934). Saliva is a 
comprise of water (about 99.5% in volume) and a variety of inorganic or 
organic matters such as salt, proteins, enzymes, peptides and so on 
(Humphrey & Williamson, 2001; Rezaei & Netz, 2021). Solid compo-
nent in droplets may also contain microorganisms e.g. bacteria or vi-
ruses. As SARS-CoV-2 RNA is reported in exhaled droplets with 
thousands of copies in exhaled breath for several times’ exhalation 
(Malik et al., 2021), the droplet nuclei (aerosols) containing active vi-
ruses may contribute to airborne transmission to susceptible persons. 

The fate of droplets expelled from the source are found dependent on 
their initial sizes. Droplet sizes govern their deposition, evaporation and 
dispersion behaviors and determine the survival of microorganisms 
within the droplets (Biswas & Dhawan, 2020; Lieber et al., 2021; Mor-
awska, 2006; Wells, 1934; Xie et al., 2007). Recent studies reported the 
SARS-CoV-2 virus remaining viable in the air or on surfaces for several 
hours or even more (Gidari et al., 2021; van Doremalen et al., 2020). It’s 
therefore vital to answer these fundamental questions regarding how far 
the droplets can travel and how fast they fall to ground or evaporate to 
droplet nuclei. Discerning the deposition rate is important for under-
standing the lifetime of droplets, surface contamination and aerosol 
removal effect via ventilation. Fig. 3 illustrates the trajectory of droplets 
depending on their initial sizes. Particles in the air are mainly subject to 
the gravity force and the aerodynamic drag force (Ge et al., 2021; Silva, 
2020; Zhang et al., 2020). The compete of the two forces varies among 
different droplets sizes. For droplets smaller than 10 μm, the time of 
complete evaporation to a solid residue is normally within 1 s (Mor-
awska, 2006; Wei & Li, 2015) and the drag force is more important than 
the gravity, leading to droplet floating and moving with air streamlines. 
The trajectory of large droplets is approximately parabolic, settling to 
the ground fast due to the greater effect of gravity as well as longer 
evaporation time of about 10 s for droplets of 100 μm (Morawska, 2006; 

Wei & Li, 2015). 
The classic Wells evaporation-falling curve model (Wells, 1934) was 

the first to reveal the quantified relationship between droplet sizes, 
evaporation time, and sedimentation rate. The predicted results with 
this model were partly confirmed by later studies (Biswas & Dhawan, 
2020; Morawska, 2006; Nicas et al., 2005; Xie et al., 2007). These 
studies indicate droplets larger than 50-100 μm will quickly fall to 
ground, while droplets smaller than 50 μm will fully evaporate before 
settling and suspend in the air to travel for longer distance. Wang, Li 
et al. (2020a) revealed that the droplets smaller than 50 μm from a 
cough will evaporate in the puff region, and thus stay longer at the initial 
height expelled. This may result in easier inhalation for person of same 
height and probability of infection. The Wells model assumes the 
expelled droplets are all within fully mixed environment with homog-
enous ambient temperature, humidity and turbulent velocity (Wells, 
1934). But more recent studies (Bourouiba, 2020; Bourouiba et al., 
2014; Chong et al., 2021) indicate the vortex in exhaled puff will trap 
small clusters of respiratory droplets and slow down the evaporation 
rate due to local moist and warm atmosphere within the expelled gas 
cloud. This will cause extended life-time of droplets and decrease the 
possibility of the formation of droplet nuclei compared with the Wells 
model. Observations of the captured videos of real coughing and 
sneezing show that the larger droplets will fall to the ground quickly 
(<1-2 m), and aerosols containing small droplets and nuclei can travel a 
further distance even up to 8 m for a sneeze and stay suspended for up to 
10 minutes depending on the environmental conditions (Bourouiba, 
2020). The deposition and evaporation rate of droplets are also affected 
by a number of other factors such as initial velocity and viscosity of 
droplets, temperature, humidity, turbulence, air velocity and so on 
(Ram et al., 2021). These physical factors control the evaporation and 
deposition rate of droplets and also play important roles in determining 
the fate of infectious viruses contained in droplets. 

2.2.2. Dispersed SARS-CoV-2 aerosols 
Proofs of SARS-CoV-2 virus existing in room air with the infector can 

serve as important indirect evidence of aerosol transmission. Droplets 

Fig. 3. Trajectory of exhaled droplets from an infected source, depending on droplet size (Silva, 2020). Deposition and evaporation behavior of droplets are affected 
by environmental factors e.g. temperature, humidity and airflow from ventilation (Rezaei & Netz, 2021). 
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expelled from the infector may contain virus. Aerosols (<5 μm) are 
dispersed into the room air and travel with air current to different lo-
cations after full evaporation. The deposited droplets or aerosols on 
surfaces may also cause resuspension. Recent studies (Chia et al., 2020; 
Guo et al., 2020; Liu, Ning et al., 2020; Ong et al., 2020; Santarpia et al., 
2020) have confirmed the existence of SARS-CoV-2 virus in the air of 
rooms with COVID-19 patients. (Liu, Ning et al., 2020) detected rela-
tively higher concentration of SARS-CoV-2 RNA in aerosols in toilet area 
used by patients (maximum of 19 copies/m3) and in some medical staff 
areas (16-42 copies/m− 3 in the protective-apparel removal rooms). 
Relatively lower level of the viral RNA was detected in isolation wards 
and ventilated patient rooms. The SARS-CoV-2 aerosols were found to 
mainly include two size ranges: 0.25-1 μm and >0.25 μm. Aerosol 
deposition was also found in two deposited samples with an estimated 
deposition rate of 31 and 113 copies/(m2•h), respectively, which were 
placed 2 m and 3 m from the bed of a patient (Liu, Ning et al., 2020)(). 
This study implies both suspended and deposited aerosols in environ-
ment with patients not evenly distributed in space. A similar study (Guo 
et al., 2020) conducted in two Wuhan hospitals also found SARS-CoV-2 
widely distributed in the air and surfaces in ICU and general hospital 
wards with patients. SARS-CoV-2 aerosols were found in the upstream 
area of a patient with a maximum detected transmission distance of 4 m 
(Guo et al., 2020), which implies SARS-CoV-2 aerosols being transported 
to a long distance via air. Chia et al. (2020) also found positive samples 
of SARS-CoV-2 RNA on surfaces and in the air of isolation rooms holding 
the patients, in which the SARS-CoV-2 aerosols were detected with sizes 
of > 4 μm and 1-4 μm, respectively in two rooms, despite with venti-
lation of an air change rate of 12 h− 1. Ong et al. (2020) tested the air 
samples in an isolation room in Singapore with a SARS-CoV-2 symp-
tomatic patient and an air change rate of 12 h− 1, but indicated negative 
results despite the contamination of the environment. While swabs from 
the air exhaust were tested positive, suggesting SARS-CoV-2 aerosols 
being replaced by ventilation and deposited on the exhaust device when 
leaving the room (Ong et al., 2020). This study also implies ventilation 
can be a potential way to remove SARS-CoV-2 aerosols in indoor envi-
ronment to reduce airborne infection risk. 

However, these studies can only indicate the viral load of SARS-CoV- 
2 RNA relying on polymerase chain reaction (PCR) without knowing the 
virus activity. Inactivated virus even with high load will not cause 
infection. Hereby, a recent study carried out by Santarpia et al. (2020) 
made cell culture of the virus collected from the air and surfaces in a 
National Quarantine Unit in Nebraska, USA. Active SARS-CoV-2 virus is 
reported in the hallway air sample (Santarpia et al., 2020). This is an 
important evidence to support SARS-CoV-2 being kept alive in aerosols 
suspended in the air. 

2.2.3. Viability of SARS-CoV-2 
As it has been confirmed with the presence of active SARS-CoV-2 

virus in aerosols persistent in the air (Santarpia et al., 2020), the next 
important question need to be answered is how long it can survive and 
how the viability of the virus decays. van Doremalen et al. (2020) 
compared the viability decay rate of aerosolized SARS-CoV-2 with 
SARS-CoV-1, indicating similar half-life time of median estimates of 
about 1.1-1.2 hours and 95% confidence intervals of 0.64-2.64 hours for 
SARS-CoV-2 and 0.78-2.43 hours for SARS-CoV-1. The viability of 
SARS-CoV-2 on surfaces are longer than in aerosols with stainless steel of 
5.6 hours and plastic of 6.8 hours at a temperature of 21-23◦C and 40% 
relative humidity (RH) (van Doremalen et al., 2020). However, the 
artificially aerosolized particles with virus from a nebulizer may be 
different from the natural aerosolization process in human respiratory 
tract (Fig. 2) as to different droplet compounds, droplet size distribu-
tions and viral load. Smither et al. (2020) reported a UK variant of 
SARS-CoV-2 in aerosols can stay viable for at least 1.5 hours with a 
medium and a high humidity under experimental conditions. The decay 
rates of the SARS-CoV-2 variant are reported ranging 0.4-2.27% per 
minute and the half-life of 0.5-2.95 hours (Smither et al., 2020). Fears 

et al. (2020) revealed the SARS-CoV-2 virus maintained infectious at a 
test time of 16 hours by aerosol suspension stability experiment under 
normal environmental conditions (23±2◦C and 53±11% RH). The 
inactivation rate of the virus strongly depends on ambient temperature 
and humidity conditions. SARS-CoV-2 is estimated to survive longer at 
low temperature and relatively low humidity on surfaces, with half-life 
time of over 24 hours at 10◦C and 40% RH and about 1.5 hours at 27◦C 
and 65% RH (Morris et al., 2020). However, there is still lack of accurate 
information on the relationship between the environmental factors (e.g. 
temperature and humidity) on the stability, viability and decay rate of 
SARS-CoV-2 existing in aerosols, which should be clearly demonstrated 
in future studies. 

2.3. Inhalation, deposition and infection 

The inhaled droplets or aerosols of the exposed person may be 
directly drawn from the exhaled flow of the infected source when they 
are in close distance (usually smaller than 1 m). The inhalation can also 
be originated indirectly from the ambient environment as a result of 
mixing of the infectious aerosols from the infector with room air. The 
indirect pattern also occurs both in short distance and long distance 
between the two persons (Fu et al., 2021; Nielsen et al., 2014; Vuorinen 
et al., 2020). Fig. 4 depicts the origins of inhaled infectious aerosols for 
the exposed person. The majority of inhalation is from the air around 
and below the nose or mouth for a standing person, upward along the 
free convective boundary layer around human body (Murakami, 2004). 
The boundary layer (body plume) moves upward from the bottom of the 
room and entrains ambient air with development. The inhalation of a 
standing person in calm environment is then directly drawn from the 
upward convective boundary layer. The inhaled air quality is thereby 
predominately determined by the microenvironment around the lower 
part of the human body (Brohus & Nielsen, 1996; Licina et al., 2015). 
This is particularly important for displacement ventilation where the 
distribution of contaminant stratifies in vertical height with clean air in 
the lower part of the room (Brohus & Nielsen, 1996). Personalized 
ventilation is developed based on the concept to directly intervene the 
thermal boundary layer and bring clean air to inhalation, and is 
considered as a novel ventilation strategy to minimize airborne infection 
risk (Melikov, 2004; Xu & Liu, 2018). 

Once inhaled, particles containing virus may deposit on surfaces of 
respiratory tract and trigger infection. Aerosols with aerodynamic 
diameter smaller than 5 μm are reported to have the ability to readily 
penetrate deep into the alveolar region of the lungs of an exposed person 
(Buonanno et al., 2020). The deposition behaviors of infectious particles 
in human respiratory tract are also predominately governed by their 
sizes. Various effects act on the particles and cause deposition on 
different sites. The acting forces including inertial impaction, gravity 
sedimentation, electrostatic precipitation, Brownian diffusion and 
interception (Darquenne, 2012, 2020; Phuong et al., 2020; ;(Wang, 
Prather et al., 2021) Wei et al., 2021) (see Fig. 5). Several studies (Nicas 
et al., 2005; Stilianakis & Drossinos, 2010; Weber & Stilianakis, 2008) 
suggested an equilibrium size of 10 μm as the cut-off size by considering 
the likelihood of deposition in respiratory tract. It’s generally considered 
that aerosols larger than 10 μm attend to deposit in the nasopharyngeal 
region mainly through inertial impaction (Fig. 5), while those larger 
than 6 μm generally will not reach the alveolar (Darquenne, 2012; 
Hinds, 1999; Sznitman, 2013). Aerosols smaller than 2 μm are primarily 
considered to deposit in the Bronchial and alveolar regions (Darquenne, 
2012). Brownian diffusion is typically considered as the dominant 
mechanism for aerosols smaller than 0.5 μm and gravity sedimentation 
is mainly for aerosols in the size range 1-8 μm. Larger particles deposit 
mainly as a result of inertial impaction rather than sedimentation. 

After deposition, the virus contained in particles may initiate infec-
tion. (Hou et al., 2020) reported possible higher nasal susceptibility to 
SARS-CoV-2 with likely subsequent aspirated virus seeding to the lung in 
SARS-CoV-2 pathogenesis. The mechanism of SARS-CoV-2 viral 
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Fig. 4. Inhalation of susceptible individual directly and indirectly drawn from the exhaled droplets/aerosols from the infected source.  

Fig. 5. Deposition mechanism of infectious 
particles through inhalation (Darquenne, 2012 
& 2020). The deposition rate is governed by 
particle sizes. 10 μm is suggested a cut-off size 
for particles to deposit and transmit disease 
(Weber & Stilianakis, 2008). Particles larger 
than 10 μm tend to impact on surfaces of upper 
airways due to inertia; particles smaller than 10 
μm are more likely to penetrate to lower pul-
monary region and sediment as a result of 
gravity and Brownian diffusion (Hinds, 1999; 
Nicas et al., 2005).   
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infection and its associations with the deposition sites are still not clearly 
addressed (Murphy et al., 2020)(Mortazavi et al., 2020). But all the 
existing evidence tracing from the source to the susceptible host (Sec-
tions 2.1-2.3) basically proves the probability of aerosol transmission of 
SARS-CoV-2. 

3. Infection risk prediction of SARS-CoV-2 

Infection risk assessment is useful for the quantification of infection 
probability of a certain disease and can serve as a meaningful tool in 
epidemic modeling to evaluate the effectiveness of corresponding con-
trol measures (Sze To & Chao, 2010). Section 2 reviews the aerodynamic 
and biological characteristics of SARS-CoV-2 transmitted from the 
source to the receptor, which provides a basis for predicting airborne 
infection risk of the virus. Models describe the process of transmission 
can be referred as infection risk models. Two broadly used models in 
epidemic modeling: Wells-Riley model and dose-response model, are 
discussed in this section to demonstrate their applications in infection 
risk prediction of SARS-CoV-2 through the airborne route in ventilated 
indoor settings. These two models mainly consider the aerosol genera-
tion and inhalation or intake dose phases (Fig. 1, ① & ③) and the in-
termediate transport process (Fig. 1, ②) is less considered. 

3.1. Wells-Riley model 

The correlation between airborne infection risk and ventilation rate 
can be assessed by the Wells-Riley model. It has been extensively used in 
predicting the infection risk of SARS-CoV-2 for epidemiological analysis 
(Li & Tang, 2021; Park et al., 2021; Peng & Jimenez, 2021; Sha et al., 
2021). This model was established based on the concept of “quanta of 
infection”, which means the number of infectious aerosols required to 
infect a single person (Riley et al., 1978; Wells, 1955). The Wells-Riley 
model regards a fully mixing condition of infectious aerosols with 
ventilation, which can be expressed as: 

PI =
C
S
= 1 − exp

(

−
Iqpt
Q

)

(1)  

where PI is the probability of infection, C is the number of infections, S is 
the total number of susceptible persons, I is the number of infectors, q is 
quanta emission rate from the infected source (quanta/h), p is the pul-
monary ventilation rate of a susceptible person (inhaled) (m3/h), Q is 
room ventilation rate with clean air (m3/h) and t is the exposure time 
interval (h). The quanta emission rate, q, is a key parameter for quan-
tifying the infection risk, which can be obtained by estimating the 
outbreak cases epidemiologically. Table 2 shows the quanta emission 
rates derived from some known COVID-19 outbreak cases indoor by 
retrospective calculations. These selected cases are indicated airborne 

transmission probable and should be accessible with information on I, p, 
t and Q for reverse calculation of q. 

Buonanno et al. (2020) estimated the quanta emission rate of 
SARS-CoV-2 from an infector based on the emitted viral load from the 
mouth, regarding respiratory activity types, activity levels, and the 
removal rates as a result of ventilation, droplet deposition and virus 
inactivation. The estimated q ranges from <1 quanta/h to >100 quan-
ta/h for an asymptomatic infector with light activity (Buonanno et al., 
2020). The estimated q derived from previous outbreak cases (Table 2) 
varies in wide range (42-596 quanta/h) with a median value of 140 
quanta/h. This median value basically corresponds to the estimated q by 
Buonanno et al. (2020) of 142 quanta/h for speaking. However, the 
ventilation rate, Q, is often difficult to determine from the retrospective 
study of an outbreak case. Some of the ventilation rates given in Table 2 
are extrapolated based on the minimal fresh air requirements for HVAC 
systems in specific occasions (ASHRAE, 2016). Different estimates of the 
ventilation rates will cause deviations of q from those in Table 2. 

The Wells-Riley model implicitly considers the infectivity of the virus 
by using the concept of quanta, and only considers the removal effect by 
ventilation. Later studies improved the model by incorporating effects of 
deposition loss, viral inactivation, filtration with face masks or filters 
and social distancing (Cravero & Marsano, 2021; Kriegel et al., 2020; 
Sun & Zhai, 2020; Sze To & Chao, 2010). By combining with the spatial 
distribution characteristics of the virus, the spatially distributed infec-
tion risk can be predicted by improved Wells-Riley models (Guo et al., 
2021; Zhai & Li, 2021; Zhang & Lin, 2021). 

3.2. Dose-response model 

Dose-response models have been extensively adopted in assessing 
the infection risk of diseases as well as the adverse health effect caused 
by other hazardous materials. A dose-response model developed by Sze 
To et al. (2008) incorporates the aerodynamic size dependent factors of 
infectious particles and forms a non-threshold stochastic model to pre-
dict infection risk: 

P1(t0) = 1 − exp

(

−
∑m

j=1
rjβjcpqt0

∫ t0

0
v(t)jf (t)dt

)

(2)  

where P1(t0) is the probability of infection with an exposure time in-
terval of t0; as the infectivity depends on sizes of pathogen-laden parti-
cles (Day & Berendt, 1972; Wells, 1955), the particles are divided into 
different size bins with a total number of m; rj indicates the infectivity 
and βj is the deposition fraction of particles containing pathogens of the 
jth size bin; c is pathogen concentration in exhaled droplets; p is pul-
monary ventilation rate of the susceptible host; q is breathing frequency 
of the infector; v(t)j is the volume density of exhaled droplets in 

Table 2 
Retrospective calculation of the quanta emission rate (q) of SARS-CoV-2 based on some known airborne transmission cases.  

Case Country Number of 
infections, C 

Total number of 
susceptible persons, 
S 

Number of 
infector, I 

Pulmonary 
ventilation rate, p 
(m3/h) 

Exposure, t 
(h) 

Ventilation rate, 
Q (m3/h) 

Quanta emission 
rate, q (quanta/h) 

Guangzhou restaurant 
(Lu et al., 2020) 

China 9 19 1 0.54 1.2 94 92 

Vietnam bar (Chau 
et al., 2020) 

Vietnam 12 200 1 0.54 4.5 6000 152 

Ningbo bus (Shen 
et al., 2020) 

China 20-23 60 1 0.54 1.67 234 90-107 

Dublin flight Ireland 13 49 1 0.5 7.5 7075 596 
Vietnam flight ( 

Khanh et al., 2020) 
Vietnam 12 20 1 0.5 11 840 140 

Choir rehearsal ( 
Hamner et al., 
2020) 

USA 32 60 1 0.64 2.5 549 253 

Call center (11th floor) 
(Park et al., 2020) 

Korea 6-15 216 1 0.54 8 6480 42-107  
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infector’s exhalation of the jth size bin; and f(t) is the pathogen viability 
over time. 

This model (Eq. 2) is suitable to evaluate the effect of ventilation on 
airborne infection risk. v(t)j can be reversely inferred from the concen-
tration of particles in inhalation of the susceptible individual (Sze To 
et al., 2008), which is affected by ventilation. To evaluate the infection 
risk of SARS-CoV-2 in indoor environment with this model, the required 
key parameters related to this virus are summarized in Table 3, which 
are mainly obtained from existing aerodynamic and biological studies 
discussed in Section 2. 

The dose-response model provides more explicit and realistic expo-
sure estimates than the Wells-Riley model, but it’s highly dependent on 
the biological data of the virus, which may be difficult to obtain espe-
cially at the initial stage of the outbreak. As shown in Table 3, the 
infectivity term (rj) of SARS-CoV-2 is still not clear at present stage. The 
sizes of infectious particles are strongly associated with the transmission 
modes, which also affect the infection sites of the virus in upper or lower 
respiratory tract. The quantitative determinations of the aerodynamic 
size dependent terms, including rj, βj and v(t)j of the infectious particles, 
are complex but important with respect to the accuracy of this model. 
Especially for the evaluation of aerosol transmission risk of SARS-CoV-2, 
the intake dose, deposition and infection mechanisms of the virus should 
be further clarified. 

4. Ventilation control strategies 

Ventilation systems can be classified according to the driven forces as 
natural ventilation or mechanical ventilation (positive pressure or 
negative pressure). Indoor ventilation mainly impacts the last two 
phases of aerosol transmission: dispersion phase and inhalation phase as 
shown in Fig. 1 (② & ③). To better understand the impact of ventilation 
on aerosol transmission of SARS-CoV-2, the prevailing ventilation 

strategies applied in buildings are compared and discussed in this sec-
tion, mainly focusing on their abilities in mitigating airborne infection 
indoor. 

4.1. Natural ventilation 

Natural ventilation is driven by natural forces such as wind pressure 
or buoyancy caused by temperature differences between indoor and 
outdoor environment. Natural ventilation is inexpensive and can ach-
ieve high ventilation rate compared with mechanical ventilation, which 
is especially suitable for warm climate and has shown robust energy 
saving potentials (Aviv et al., 2021; Oropeza-Perez & Østergaard, 2014; 
Park et al., 2021; Rackes et al., 2016). By proper passive design of the 
building structures and their openings (e.g. windows, doors, solar 
chimneys or wind towers) or combining passive cooling or heating 
systems, fresh outdoor air can be directly induced to improve indoor air 
quality and thermal comfort (Abdullah & Alibaba, 2020; Deng & Tan, 
2020; Deng et al., 2021; Fan et al., 2020; Jia et al., 2021; Lipinski et al., 
2020; Wang, Cao et al., 2020; Wen et al., 2020; Wu et al., 2021). WHO 
specified a fresh air volume of 160 L/s per patient for naturally venti-
lated in health-care facilities (WHO, 2020). This high flow volume of 
fresh air is normally difficult to realize by using mechanical ventilation 
which is restricted by the high energy consumption. Park et al. (2021) 
explored the potential of natural ventilation in preventing COVID-19 
airborne transmission in a Korean school and found reduced infection 
risk of lower than 1% with cross-ventilation of over 15% windows 
opened (equivalent to an air change rate of 6.51 h− 1) simultaneously 
assisted by wearing face masks. 

However, there are still concerns about inter-building and inter-unit 
transmission of the virus. The airborne transmission route of SARS-CoV- 
1 between both neighboring buildings and the household units in a 
building was reported in 2004 (Yu et al., 2004). Wind-driven inter-unit 
transmission and indoor-outdoor transmission of airborne pathogens 
were also reported by previous studies (Dai et al., 2019; Liu & You, 
2012). Therefore, careful plans and designs of airborne precaution areas 
and the placement of infected patients are strongly needed so as to apply 
natural ventilation to reduce the infection risk of people in the sur-
rounding areas, e.g. in health care facilities (WHO, 2009). Fluctuation of 
ventilation rate driven by variable forces and varying flow directions 
add difficulties in natural ventilation design. To avoid inter-building or 
inter-unit airborne transmission, the airflow from infected source area 
should be directed to areas having sufficient dilution and preferably 
outdoor with adequate building spacing (Li & Chen, 2021; Liu & You, 
2012; Liu et al., 2020; Wang, 2020; Wang, Yin et al., 2020). 

Due to the dynamic outdoor conditions and the narrow favorable air 
temperature (20-26◦C) (Axley & Emmerich, 2002), the thermal comfort 
of indoor space cannot always be guaranteed. Another strategy to utilize 
natural ventilation is to adapt it with HVAC systems (or hybrid venti-
lation). The mixed system adds complexity to the system but can extend 
the use of natural ventilation in other climate zones and can be under 
better control (Qi et al., 2020). Aviv et al. (2021) estimated the per-
formance of the system coupled natural ventilation with radiant cooling 
to increase fresh air supply and prevent COVID-19 transmission. The 
combined system is reported to successfully balance the natural venti-
lation and energy saving, and an energy decrease of 10-45% can be 
achieved by using this system compared with traditional HVAC systems 
in global major cities (Aviv et al., 2021). 

Natural ventilation is proved with the ability to act as a possible 
solution to mitigate airborne transmission risk of COVID-19 by 
increasing the fresh air volume during the epidemic (Lepore et al., 2021; 
Park et al., 2021; Zivelonghi & Lai, 2021). Resilient system design and 
appropriate combination with HVAC systems can maximize its ability in 
airborne infection control by simultaneously taking comfort and energy 
savings into account (Lomas & Ji, 2009). 

Table 3 
Available information for prediction of infection risk of SARS-CoV-2.  

Parameter Available data References Remarks 

Virus 
concentration, 
c 

c=1 × 105.25 

TCID50
a/mL 

van Doremalen 
et al. (2020) 

Obtained in the 
upper and lower 
respiratory tract in 
human subjects 

Infectivity term, 
rj and 
deposition 
fraction, βj 

ID50
b = 1.8TCID50 

(Infectious dose for 
aerosol ≤3 μm, 
[mean value range: 
0.6-3.0]) r≤3μm =

0.385 β≤3μm = 0.6 

Alford et al. 
(1966) (rj for 
influenza A) 

rj, infectious term of 
SARS-CoV-2, is not 
available at present. 
rj of influenza A is 
listed here instead. 

ID50 = 223.5TCID50 

(Infectious dose for 
aerosols ≥3 μm, for 
a larger aerosol 
mean value range: 
127-320) r≥3μm =

0.0031 β≥3μm, 
determined by  
Hinds (1999) 

Douglas 
(1975) (rj for 
influenza A) &  
Hinds (1999)  

Viability of SARS- 
CoV-2, f(t) 

f(t) = 0.01778 ×
(0.5)− t/1.15 

van Doremalen 
et al. (2020), 

Extrapolated from 
Fig. 1 in van 
Doremalen et al. 
(2020). Half-live of 
SARS-CoV-2 of 
about 1.1 to 1.2 
hours (21-23◦C, 
40% RH) 

Volume density 
of exhaled 
droplets, v(t)j 

Final nucleus size is 
assumed as 6% of its 
initial volume 

Nicas et al. 
(2005)   

a TCID50 is a unit to describe the quantity of the virus, referring to 50% tissue- 
culture infectious dose. 

b ID50 50% infectious dose, can be used to calculate the infectivity term r (r=- 
ln 0.5/ID50). 
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4.2. Mechanical ventilation 

4.2.1. Total volume air distribution 
Mixing ventilation and displacement ventilation are two conven-

tional total volume air distribution principles in indoor settings, both 
treating air in the whole room scale. Mixing ventilation is realized by 
inducing high speed air from diffusers located at the upper part of the 
room, which facilitates the mixing of supplied air with ambient air due 
to high momentum (Fig. 6 (a)). For displacement ventilation, cooled air 
is supplied from lower diffusers, driven by convective thermal flow 
around heat sources (e.g. persons, equipment or lamps), and discharged 
from the top of the room (Brohus & Nielsen, 1996) (Fig. 6 (b)). 

There have been some other ventilation strategies like downward 
ventilation, diffuse ceiling ventilation, underfloor ventilation, piston 
ventilation and stratum ventilation, which are designed between the two 
principles (Yang et al., 2019). Other developing ventilation strategies 
including wall-attached ventilation, impinging ventilation and 
confluent jet ventilation are all realized based on the displacement 
principle in later flow development stage (Bu et al., 2021). Different 
combinations of the supply or exhaust openings and their relative po-
sitions to the infector or the susceptible person will affect the efficacy of 
the ventilation principles in airborne risk control (Chen et al., 2020; 
Kong et al., 2021). Despite diverse air distribution principles indoor, 
three prevailing and basic ventilation strategies are discussed in detail, 
which are mixing ventilation, displacement ventilation and personalized 
ventilation (Fig. 6). Personalized ventilation is an old system form being 
used in vehicles for years but is a new system in other occasions and with 
novel designs. Their efficacy in mitigating airborne infection and the 
impact on different phases of airborne transmission are emphasized. The 
comparisons among the three prevailing ventilation strategies and three 
other emerging ventilation strategies that may potentially contribute to 
airborne risk control are summarized in Table 4. 

Mixing ventilation (MV) is one of the most widely used ventilation 

principle in buildings to maintain good thermal comfort and inhaled air 
quality for occupants. Expelled aerosols from the infected person can be 
diluted and removed by supplying fresh air from MV. Jiang et al. (2009) 
indicated the infection risk of SARS-CoV-1 can be effectively reduced by 
increasing the equivalent dilution ratio of fresh air volume to infectious 
flow with over 10,000 times, which can only be realized by using natural 
ventilation in practice. WHO (2009) recommends that the fresh air 
volume in environment with patients should be no less than 150 m3/h 
per person. This number is derived based on the predicted results with 
the Wells-Riley model, assuming pathogens distributed uniformly under 
fully mixing conditions (WHO, 2009). ASHRAE (2008) requires a min-
imum air change rate of 12 h− 1 and negative pressure for airborne 
infection isolation rooms in newly built buildings. However, there is still 
debate about “sufficient ventilation rate” for airborne infection pre-
vention indoor (Li et al., 2007). As the ventilation efficiency of MV is low 
of merely around 1 (Yang et al., 2019), its protection effect of removal 
aerosol pathogens is hereby limited and should be enhanced by sup-
plying large volume of fresh and conditioned air to the entire room, 
which may lead to high energy cost of the HVAC system. As the dilution 
process of pathogens with MV may bring the infectious pathogens to all 
parts of the room by means of mixing (Berlanga et al., 2018; Ren et al., 
2021; Sandberg et al., 2020), this ventilation principle is not applicable 
to occasions operated at low fresh air volume and with the presence of 
infectors. Therefore, to overcome this two-sided role of MV in airborne 
transmission, the supplied fresh air should always be maintained at a 
relatively high level for the purpose of mitigating airborne infection risk. 

Displacement ventilation (DV) is suitable for a relatively high space 
(>3 m) operating at cooling mode (Brohus & Nielsen, 1996). Clean and 
cool air is supplied from bottom diffusers in the room and heated up by 
internal heat sources to move upward, which creates a stratified clean 
zone at the lower part and a relatively polluted zone at the upper part of 
the room (Fig. 6 (b)). Ventilation efficiency of DV in the lower clean zone 
is significantly higher than MV (Bjørn & Nielsen, 2002), but it is 

Fig. 6. Schematic of ventilation principles and interactions with dispersed exhalation flow from source to receptor with the three different ventilation strategies: (a) 
mixing ventilation, (b) displacement ventilation and (c) personalized ventilation (combined with mixing ventilation). 
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normally not recommended for occasions containing infected patients. 
ASHRAE (2008) strictly restricts its application in these health care fa-
cilities. It is mainly due to the “lock-up” phenomenon, which restricts 
the diffusion of exhaled pathogens with the effect of reverse temperature 
gradient along vertical height (temperature grows with height) (Fig. 6 
(b)). This phenomenon has been reported by previous studies (Gao et al., 
2008; Olmedo et al., 2012; Qian et al., 2006; Xu et al., 2015). It will 
cause increased penetration distance of the exhaled flow and a reduced 
mixing rate with ambient air, which may increase the exposure risk of 
infectious particles for the exposed person in close proximity. However, 

other studies (e.g. Berlanga et al., 2018; Li et al., 2013) indicated better 
performance of DV in reducing airborne infection than with MV. This 
may occur with no direct exposure to the exhaled flow from the infected 
source and with a relative distant distance apart from the source. 

4.2.2. Personalized ventilation 
Personalized ventilation (PV) is a novel concept to deliver clean air 

directly to the inhalation zone of a person, which is considered as a 
promising solution to reduce airborne cross-infection between occu-
pants (Melikov, 2020; Xu & Liu, 2018; Xu, Wei et al., 2020). Different 

Table 4 
Comparisons of different ventilation strategies with respect to their efficacy in aerosol transmission control.  

Ventilation principle Aerosol transmission 
intervention 

Advantages Limitations Applicable Occasions Use priority 
during epidemic 
(ASHRAE, 2020) 

Mixing ventilation (MV)  Intervene dispersion phase 
and inhalation phase by 
influencing the total 
environment (Fig. 1); the 
effect of MV on dispersion 
of aerosols in 
microenvironment between 
persons is minimal (Nielsen 
et al., 2014) 

Widely used; simple 
system form; uniform 
thermal environment 
and air quality 

Facilitate dispersion of 
aerosols; low ventilation 
efficiency; high air volume 
for infection control and 
increased energy cost 

Applicable in most 
occasions 

High 

Displacement ventilation (DV)  Intervene dispersion phase 
and inhalation phase ( 
Fig. 1) by influencing both 
total environment and 
human microenvironment 
due to the effect of 
temperature gradient ( 
Bjørn & Nielsen, 2002) 

High ventilation 
efficiency at lower 
clean zone; reduced 
contaminant mixing 
with ambient air; low 
air supply velocity 

Thermal stratification can 
increase penetration 
distance and decrease 
diffusion of exhaled flow ( 
Bjørn & Nielsen, 2002;  
Qian et al., 2006; Xu et al., 
2015); not applicable for 
heating mode 

Applicable in high space 
(normally >3 m) with 
cooling needs 

Low; not 
recommended in 
healthcare 
facilities ( 
ASHRAE, 2008) 

Personalized ventilation (PV)  Directly intervene early 
dispersion phase (with PV 
or PE) and inhalation phase 
(Fig. 1) 

Direct supply of fresh 
air to inhalation (PV) 
or direct exhaust of 
exhaled aerosols from 
the source (PE); high 
localized efficiency; 
energy saving 

Possibly facilitate aerosol 
diffusion from source (Xu, 
Wei et al., 2020); lack of 
mature design criteria and 
technical installation 
solutions; system form is 
complex and often needs to 
couple with total volume 
ventilation (Melikov, 2004) 

People seated for a 
relatively long time, such 
as offices, schools, public 
transportations, theaters, 
clinics, etc.; PV can be 
used with total volume 
ventilation like MV or DV 

High 

Downward ventilation (DWV)  Intervene dispersion phase 
and inhalation phase by 
influencing the total 
environment or the 
microenvironment 
depending on the airflow 
pattern similar to MV or DV 
(Fig. 1) 

DWV diffuser outside 
the occupied zone and 
local exhausts at high 
locations will create a 
flow pattern like DV 
and be able to remove 
exhaled aerosols, 
suitable for hospital 
wards (Nielsen et al., 
2010) 

Not able to produce laminar 
and unidirectional airflow 
pattern in the occupied 
zone as expected (Qian 
et al., 2005); low-velocity 
DWV from diffusers above 
persons is often unable to 
penetrate human 
microenvironment ( 
Olmedo et al., 2013); flow 
pattern similar to MV with 
downward flow above 
occupants as thermal plume 
increases mixing 

Recommended by CDC 
(2005) for isolation 
wards; locations of 
diffuser and exhaust 
should be optimized 
considering the positions 
of patient and healthcare 
workers (Nielsen et al., 
2010). 

Medium 

Protected zone ventilation (PZV)  Intervene dispersion phase 
and inhalation phase ( 
Fig. 1) by influencing both 
total environment and 
human microenvironment 
with air curtain partition 

Separate the room 
into subzones by 
plane jet; higher 
protection efficiency 
against airborne 
transmission than MV 
(Cao et al., 2015;  
Aganovic & Cao, 
2019) 

Possible thermal 
discomfort; high flow 
volume and energy 
consumption; only for 
cooling purpose (Cao et al., 
2013) 

Applicable in clinics or 
hospital wards 

Medium 

Stratum ventilation (SV)  Intervene dispersion phase 
and inhalation phase in the 
occupied zone affected by 
SV 

High air quality in the 
breathing zone of 
occupants by 
delivering clean air 
directly to this height; 
small temperature 
difference between 
head and feet (Tian 
et al., 2011) 

Relative position between 
the airborne agent source 
and the SV diffuser affects 
its performance (Lin et al., 
2012) 

Applicable in schools, 
offices and other small or 
medium sized rooms 

Medium  
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from the overall dilution effect of MV, PV is aimed to improve the local 
ventilation efficiency around human body (Fig. 6 (c)). Through proper 
design, it can minimize airflow mixing with ambient air, and can pro-
vide clean air with an efficiency of more than 90% (Bolashikov & 
Melikov, 2009; Melikov & Dzhartov, 2013). Air terminal devices of PV 
have various forms and can be flexibly controlled according to the user’s 
need (Katramiz et al., 2020; Melikov, 2004). This system has distinct 
advantages in improving the thermal comfort, air quality and energy 
efficiency (Assaad, et al., 2021; Liu, Li et al., 2020; Melikov, 2004;). A 
number of studies (Gao & Niu, 2007; Li et al., 2013; Melikov & Dzhar-
tov, 2013; Nielsen et al., 2007; Niu et al., 2007; Pantelic et al., 2009; Xu 
et al., 2020; (Xu, Wang et al., 2021)) have reported excellent perfor-
mance in reducing the intake dose of infectious pathogens for the 
exposed occupant. For example, Nielsen et al. (2007) proposed 
bed-integrated PV devices including a pillow and a blanket made by 
textile and indicated a high protection efficiency of clean air delivery of 
95% against airborne infection. Pantelic et al. (2009) evaluated the 
infection risk reduction ratio of influenza A and tuberculosis with a desk 
amounted PV device and reported a reduction of 27% and 65% for the 
two kinds of diseases, respectively. 

However, it also should be noted that when PV is applied to the 
infector alone, the impacting airflow from PV will accelerate the mixing 
of infectious aerosols with room air, and hereby may increase the 
infection risk of the exposed occupant (Bolashikov & Melikov, 2009; Xu 
et al., 2021). Xu, Wei et al. (2020b) reported a nozzle-based PV jet en-
trains droplets from the infector’s exhalation with a close face-to-face 
orientation. Direct exposure risk (Fig. 4) from infectious exhaled flow 
is therefore increased by using PV (Xu, Wei et al., 2020). The accelerated 
mixing effect of PV to the infected source is also observed by this study 
but it only increases indirect exposure by a small percentage (Xu, Wei 
et al., 2020). In this context, to avoid the promotion of PV on dispersion 
of exhaled droplets, a personalized exhaust (PE) can be used to control 
the source. The effectiveness of PE or combined PV-PE system in aerosol 
transmission control has been primarily proved in previous studies 
(Dygert & Dang, 2010; Yang et al., 2015). 

PV can typically provide a flow ranging from 5 L/s to 20 L/s per 
person depending on the terminal device types and the positioning, 
which can be used to improve the thermal comfort and inhaled air 
quality in a localized environment (Liang et al., 2021; Melikov, 2004). In 
order to keep an acceptable background thermal environment, PV is 
normally coupled with MV or DV (Melikov, 2004). There are several 
remaining questions to be addressed for practical use of PV in mitigating 
airborne infection risk, such as the development of highly efficient PV 
terminal devices, effective combination of PV with the total ventilation 
or the PE system, and technical solutions for installation of PV in specific 
occasions like offices, theaters, or vehicles with high occupancy. 

5. Challenges and research trends 

In the context COVID-19 pandemic, the prevention and control of 
aerosol transmission of the virus SARS-CoV-2 in indoor environment is 
remaining challenging. It’s necessary to carefully examine each process 
of the aerosol transmission route to cut off and prevent the transmission 
at any possible stage. 

The discussions in previous sections have demonstrated close rela-
tionship between ventilation and aerosol transmission of SARS-CoV-2. 
Ventilation is found to mainly intervenes the dispersion and inhalation 
phases of aerosol transmission, which can be realized by natural venti-
lation, mechanical ventilation or hybrid ventilation. Improper air dis-
tribution design may increase the risk of aerosol transmission by 
facilitating aerosol dispersion to unfavorable areas or by locking accu-
mulated aerosols to undesired levels (Correia et al., 2020). The venti-
lation system has even been reported as a transmission way of airborne 
diseases (e.g. SARS-CoV-1, measles, tuberculosis, influenza, chickenpox 
and smallpox) (Li et al., 2007). Inversely, with proper design and 
operation of the ventilation system, aerosol transmission can be 

minimized (Ding et al., 2020; Morawska et al., 2020). 
To maximize the efficacy of ventilation systems in airborne infection 

control including SARS-CoV-2, there are several challenges remain to be 
solved: (1) novel ventilation strategies to intervene the aerosol trans-
mission route from source to receptor to the greatest extent and as early 
as possible; (2) effective integration of other environmental control 
techniques to maximize the efficacy of ventilation in aerosol trans-
mission mitigation; (3) resilient design of HVAC systems to adapt both 
normal and epidemic situations, and being operated with relatively low 
energy consumption. 

In order to effectively address these challenges, future research is 
needed regarding following aspects:  

• To intervene the aerosol transmission process of significance, novel 
ventilation design should be established on a basis of full under-
standing of the transmission mechanisms of the infectious diseases 
and their influencing factors. Accurate prediction of the airborne 
infection risk of SARS-CoV-2 relies on adequate information of the 
viral load, viability, and pathogenicity of the virus combined with 
information of the aerodynamic characteristics of virus-laden drop-
lets or aerosols. Multidisciplinary research needs to be established 
with joint efforts from multidisciplinary fields, such as virology, 
epidemiology, aerodynamics, public health, environmental engi-
neering and so on, which will be helpful to predict the infection risk 
of the disease and develop control strategies accordingly. 

• Most of the present ventilation strategies mainly impact the disper-
sion process of exhaled aerosols and the inhalation process (phases 
②&③ in Fig. 1) by influencing the total environment (e.g. mixing 
ventilation to dilute the overall concentration of infectious particles). 
As the dispersion and inhalation of aerosols mainly occur within 
human microenvironment, this indirect impact from overall venti-
lation may be inefficient (Nielsen et al., 2014; Zhao et al., 2020; 
Zhao et al., 2020). By respecting this special microenvironment be-
tween short-ranged occupants and developing appropriate ventila-
tion strategies towards it, both short-range and long-range aerosol 
transmission can be minimized (Melikov, 2004; Xu & Liu, 2018; Xu, 
Wei et al., 2020). Future ventilation should be designed more 
personalized and occupant-oriented with a paradigm shift (Cao et al., 
2020; Li et al., 2020; Melikov, 2020; (Wang, Wang et al., 2021)). 
Personalized ventilation that directly intervenes inhalation (PV) and 
the dispersion of exhaled droplets from early stage (by PV or PE) may 
serve as a solution to prevent aerosol transmission both from the 
source and to the receptor. But the efficiency of PV is affected by 
numbers of factors such as the air terminal device configurations, 
interaction of multi-airflows in human microenvironment, and so on 
(Melikov, 2004; Xu et al., 2018). Occupant-oriented ventilation is 
more targeted and energy efficient but is also highly dependent on 
intelligent monitoring and control algorithms (Cao, 2019; Nienaber 
et al., 2020; Ren & Cao, 2020; (Wang, Wang et al., 2021); Wang, 
Huang et al., 2021; Zhu et al., 2020). Future research is needed in 
fields of fluid mechanics and fluid dynamics to develop highly effi-
cient air terminal devices. Airflow patterns favorable to control the 
aerosol transmission route and minimize airborne infection risk need 
further investigation. Intelligent monitoring and controlling are also 
needed to be properly integrated to the ventilation system to opti-
mize the operation modes with multiple objectives. This will be 
helpful to develop personalized and smart ventilation systems, which 
can be expected in future buildings.  

• According to guidelines for HVAC system operation in normal time, 
current system design cannot provide adequate protection during the 
pandemic (Zheng et al., 2021). In addition to ventilation, other 
environmental control techniques are recommended to couple with 
the HVAC systems although they are not mandatory, which may 
include HEPA filtration, ultraviolet germicidal irradiation (UVGI), 
heat inactivation, air ionization, plasma purification, etc. (Berry 
et al., 2021; Feng et al., 2021; Feng et al., 2021; Feng et al., 2021; 
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Sodiq et al., 2021). Studies on these assistive techniques to HVAC 
systems are normally based on normal conditions and the effective-
ness should be further verified during pandemic. The adaptive abil-
ities of these control measures to both normal and epidemic 
conditions also need to be evaluated. Novel disinfection devices with 
high efficiency of virus removal and relatively low energy con-
sumption are urgently needed. The integration of these techniques 
with ventilation systems may promote their own efficacy in airborne 
risk control and should be further validated in future studies. 

• Current ventilation systems designed according to previous guide-
lines for normal conditions may not meet the requirements for risk 
control during the pandemic. They may fail to supply sufficient clean 
air to dilute the virus. To develop resilient ventilation systems 
adapting both normal and epidemic conditions, measures to adapt 
the shift should be investigated. For example, disabling the air cir-
culation system may be realized by merely increasing heating or 
cooling load (Morawska et al., 2020); increase of ventilation rate or 
using HEPA can be made by increasing the capacity of fans (Zheng 
et al., 2021); or the performance of HVAC systems in disease control 
can be improved by installation of sterilization equipment (e.g. 
UVGI, plasma air purifier, heat inactivation facilities, etc.). The se-
lection and determination of effective adaptation measures should be 
a research focus of future HVAC systems. Another important ques-
tion is how to operate the HVAC system in low energy consumption. 
A series of measures like natural ventilation (Aviv et al., 2021), heat 
recovery system or phase change materials for energy storage may be 
integrated to the HVAC systems. More research efforts should be 
made to enrich and improve current HVAC guidelines and to pro-
mote the technical measures being practiced in future engineering 
projects. 

6. Conclusion 

This paper roughly divides the probable aerosol transmission route 
of SARS-CoV-2 into three phases: (1) aerosol generation from an infected 
source, (2) aerosol dispersion and loss, and (3) inhalation, deposition 
and infection to susceptible host. As the understanding of the trans-
mission mechanisms is essential for risk assessment and control, this 
paper comprehensively reviews the aerosol transmission characteristics 
of SARS-CoV-2 in each stage. Two infection risk models which can be 
used to evaluate the associations between ventilation and the proba-
bility of SARS-CoV-2 infection are discussed. The key parameters 
required by the two models are analyzed based on available literatures, 
which can provide a basis for SARS-CoV-2 risk assessment in ventilated 
context. 

Aerosol transmission of SARS-CoV-2 can only proceed before all the 
three phases are completed, and this provides possibility to reduce the 
transmission risk by intervening each transmission phase with envi-
ronmental control measures, including ventilation. The ultimate goal of 
ventilation applied in epidemic control is to reduce the intake dose of the 
exposed person. To reveal the impact of ventilation on the transmission 
process between the source and the receptor, three prevailing ventila-
tion strategies are analyzed, which are mixing ventilation, displacement 
ventilation and personalized ventilation. It can be concluded that 
different air distribution strategies may influence the aerosol trans-
mission route differently. For example, mixing ventilation can indirectly 
affect both the dispersion phase and the inhalation phase by diluting the 
overall pathogen concentration in the entire room. While personalized 
ventilation may directly intervene both the early stage of dispersion 
from the source (with PV or PE) and the inhalation by delivering clean 
air to the breathing zone of the receptor, which is expected to be a 
promising way for airborne infection control. The airflow pattern with 
ventilation serves as a very important factor in affecting the dispersion 
and distribution of exhaled aerosols in indoor environment and also 
directly or indirectly influences the inhalation of exposed occupants. 
Novel airflow patterns should be designed by combining the clear 

objective of epidemic control of airborne diseases to effectively and 
efficiently response to possible new outbreaks. 

To better utilize ventilation or HVAC systems in protecting people 
against the aerosol transmission of COVID-19, the remaining challenges 
including novel ventilation design to mitigate airborne infection, 
effective integration of ventilation with other environmental control 
strategies and resilient HVAC system development to adapt both com-
mon and epidemic conditions should be further resolved. With the aid of 
interdisciplinary research and the development of intelligent technolo-
gies, these challenges can be addressed to form innovated HVAC system 
adapting both normal and epidemic situations and energy efficient in 
epidemic control. 
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